

 pg. 1

i3 Application Wrapper

The following is an example of an i3 application wrapper. This simple application

displays any messages the application has been approved to receive is displayed

on the system console. Such an application serves to demonstrate the

construction of an application wrapper and in on operational environment, it is

also useful for testing purposes. When bringing up a device for the first time, the

messages from that device can be directed to such an test application to verify

the messages are properly being emitted from the device and passed through the

i3 message fabric.

Note: this application wrapper assumes it is receiving asci/text messages. If there

is a possibility that the device may be transmitting binary messages, some

additional logic will be needed to ensure that only the printable characters are

displayed.

import time

from sdk.i3_broker_application import I3BrokerApplication

BROKER_HOST = '18.117.224.165' #IP of the i3 core information fabric

BROKER_PORT = 1883 # port number on the i3 core node

APPLICATION_NAME=’hello_world’ # the wrapper name

APPLICATION_PASSWORD = '123456' # password used to authenticate this wrapper

DEVICE_NAME = 'device' # the name of the device this app wants data from

DEVICE_TOPIC = 'temperature' # the data type the wrapper is interested in

def on_message(topic, message): # when the wrapper gets a msg, print it out

 print('New message received', topic, message)

i3_broker_application = I3BrokerApplication(BROKER_HOST, BROKER_PORT,

APPLICATION_NAME, APPLICATION_PASSWORD)

i3_broker_application.connect()

i3_broker_application.on_message(on_message)

i3_broker_application.subscribe(DEVICE_NAME, DEVICE_TOPIC)

time.sleep(60 * 60 * 24) # keeps the app alive for one day

i3_broker_application.disconnect()

 pg. 2

 The import commands make sure the python code has access to the python

system time and to the i3 data structures and class software.

 The next six (6) parameters are the key parameters used by the i3 system

to establish a connection between this application and the core i3 software.

o BROKER_HOST is the IP address of the machine that hosts the i3

software.

o BROKER_PORT is the port number this application will monitor for

new information coming from authorized data streams.

o APPLICATION_NAME is the logical name of this wrapper and it must

correspond to the application name as defined in the i3’s user

menus. Note the file name and the wrapper names are independent

of each other and can be named differently.

o APPLICATION_PASSWORD: is the password used to authenticate this

wrapper with the i3 software. This parameter much match the

password associated with the application password as defined in the

user menus.

o DEVICE_NAME is the name of the device that this application is

seeking information from. This should match the device name as

listed in the Device Submenu of the Spaces Menu and as displayed on

i3’s Application Desktop (or the Data Streams submenu if the

connection has not yet been authorized).

o DEVICE_TOPIC is the name of the data type as displayed on the

Application Desktop (or the Data Streams submenu if the connection

has not yet been authorized) and links to a data type associated with

a device in the Devices submenu of the Spaces Desktop.

The def on_message sequence is used to define a function that will be called
when a new information message is detected for which that application has been
approved to receive. For this example wrapper, the software will print the
information topic type and message to the console. The process of posting the
message to the console will be executed for every message received by this
wrapper until the wrapper process is terminated.

 pg. 3

The i3_broker_application = I3BrokerApplication(BROKER_HOST, BROKER_PORT,
APPLICATION_NAME, APPLICATION_PASSWORD) line creates the object needed to
allow this wrapper to communicate with the i3 core software. The
i3_broker_application.connect command uses the created object to communicate
with the i3 core software on the BROKER_HOST over port BROKER_PORT and
authenticate this wrapper as being a valid i3 related process with the
APPLICATION_NAME and APPLICATION_PASSWORD.

The i3_broker.application.on_message tells the i3 software that whenever a new

data type is received, the on_message function is called.

The i3_broker_application.subscribe is used by the application to subscribe to a

specific topic that is associated with a defined data type.

In order for a wrapper to receive a data type, the wrapper must be approved by

the device owner to receive these data types from the requested device AND the

application has to subscribe to the data topic as a part of the wrapper logic.

A information message is defined by its source device name and data type

prefaced by the ‘device’ keyword. For example, if an application wants to receive

the data type “location” from device “SAN-truck-1”, the application wrapper

would subscriber to the data topic “devices/SAN-truck-1/location”

A single application can be subscribed to many different device topics at the same

time. For example, if the application subscribes to “devices/SAN-truck-

1/location” and “devices/SAN-truck-2/location” they would receive location

messages from truck-1 and truck-2 (assuming the device owners have authorized

the wrapper to receive the location data type from both trucks).

The time.sleep command keeps this application running for 24 hours and then the

wrapper will terminate. In effect, each message sent to this wrapper over a 24

hour period will be posted to the console screen. If the time.sleep command is

deleted, then the wrapper will run continuously and show all messages that come

through the I3 software. If the duration is changed to 10 minutes, then the

 pg. 4

console window will show the messages that come in over the next 10 minutes

and then the wrapper will terminate.

The “i3_broker_application.disconnect()” gracefully terminates the connection
between the wrapper and the i3 core before the wrapper shuts down.

When the wrapper development is complete, if the wrapper code is to be

installed on the machine that is running the i3 core software, it should be sent to

the I3 administrator so they can install it in an appropriate I3 application library.

If the wrapper code is to be run on an edge processor (real or virtual) that is

independent from the i3 core node (e.g. a front end processor), the developer can

install the software on that computer directly.

